Parallel Implementation of the Accelerated Integer GCD Algorithm
نویسندگان
چکیده
منابع مشابه
Parallel Implementation of Schönhage's Integer GCD Algorithm
We present a parallel implementation of Schönhage’s integer GCD algorithm on distributed memory architectures. Results are generalized for the extended GCD algorithm. Experiments on sequential architectures show that Schönhage’s algorithm overcomes other GCD algorithms implemented in two well known multiple-precision packages for input sizes larger than about 50000 bytes. In the extended case t...
متن کاملImprovements on the accelerated integer GCD algorithm
The present paper analyses and presents several improvements to the algorithm for finding the (a, b)-pairs of integers used in the k-ary reduction of the right-shift k-ary integer GCD algorithm. While the worst-case complexity of Weber’s “Accelerated integer GCD algorithm” is O (
متن کاملA modular integer GCD algorithm
This paper describes the first algorithm to compute the greatest common divisor (GCD) of two n-bit integers using a modular representation for intermediate values U , V and also for the result. It is based on a reduction step, similar to one used in the accelerated algorithm [T. Jebelean, A generalization of the binary GCD algorithm, in: ISSAC ’93: International Symposium on Symbolic and Algebr...
متن کاملGCDHEU: Heuristic Polynomial GCD Algorithm Based on Integer GCD Computation
A heuristic algorithm, GCDHEU, is described for polynomial GCD computation over the integers. The algorithm is based on evaluation at a single large integer value (for each variable), integer GCD computation, and a single-point interpolation scheme. Timing comparisons show that this algorithm is very efficient for most univariate problems and it is also the algorithm of choice for many problems...
متن کاملA parallel extended GCD algorithm
A new parallel extended GCD algorithm is proposed. It matches the best existing parallel integer GCD algorithms of Sorenson and Chor and Goldreich, since it can be achieved in O (n/ logn) time using at most n1+ processors on CRCW PRAM. Sorenson and Chor and Goldreich both use a modular approach which consider the least significant bits. By contrast, our algorithm only deals with the leading bit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 1996
ISSN: 0747-7171
DOI: 10.1006/jsco.1996.0025